"Are personal robots going to simplify our lives soon?"

PRESENTATION ABSTRACT

Advances in research suggest that robotics will have an impact on our societies on a scale comparable to what computing and communication technologies had these past decades. In the not so far future we will talk about personal robots the same way as we talk nowadays about personal computers. These robots will be ubiquitous in our society. The potential applications of robotics research are potentially unlimited: from rescue robots at disaster sites to personal robots to assist us in everyday life, whether in healthcare applications, entertainment or education and also as a technology for smart articulated prostheses for people with motor disabilities.

In this presentation, I will discuss the current state of the art in the field and the difficulties which need to be overcome in order to create robots that can interact effectively and safely in a human environment. I will focus mainly on robots which are able to walk and manipulate objects, for example humanoid robots. Specifically, I will present the research conducted with my colleagues at the Computational Learning and Motor Control Lab at USC which focuses on developing control and learning algorithms. I will also emphasize the practical implications of this research in the near future.

BIOGRAPHY

Ludovic Righetti is a postdoctoral researcher at the Computational Learning and Motor Control Lab at the University of Southern California since March 2009. He studied at the Ecole Polytechnique Fédérale de Lausanne where he received an engineering degree in 2004 and a Doctorate in Science in 2008. His doctoral thesis was awarded the 2010 Georges Giralt PhD Award given by the European Robotics Research Network for the best robotics thesis in Europe. His research focuses of the development of control methods for agile robots able to move in difficult environments and able to manipulate objects.

Please RSVP by sending an email to deputy-sdv.mst@consulfrance-losangeles.org

Additional information